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Half-Space Problem of the Boltzmann Equation for 
Charged Particles 
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For two particular collision kernels, we explicitly solve the one-dimensional 
stationary half-space boundary value problem of the linear Boltzmann equation 
including a constant external field via an extension of Case's eigenfunction 
technique. In the first collision model we reproduce a solution recently obtained 
by Cercignani; in the second model the solution of the stationary boundary 
value problem is presented for the first time. 

KEY WORDS:  Boltzmann equation; boundary-value problem; half-range 
completeness. 

1. I N T R O D U C T I O N  

An ensemble of particles wi th  mass m and charge e, which move in a 
neutral host medium under the action of an external field E, can be 
described by a probability density f(t, x, p) for finding a charged test par- 
ticle at point x and time t with momentum p. This probability density 
satisfies the Boltzmann equation, which reads in one dimension 

( O + P S x + e E ~ ]  m 

The collision operator ~ is a linear integral operator, if interactions among 
the charge carriers themselves (via Pauli's principle or collisions) can be 
neglected. 

In this article, we examine the stationary half-space problem for 
the Boltzmann equation, i.e., we assume the medium to be semiinfinite 
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(xe (0, oo)). At the boundary x = 0  charged particles may be shot in with 
a given momentum distribution ~o. Thus we seek the solution of 

(P  ~--~+eE ~---~lf(x,P)=~f(x,P) (1) 

with the boundary conditions 

f(0, p) = q~(p) for p > 0 and lim f(x,  p) = 0 (2) 
x ~ o o  

For zero electric field E - 0  this problem has been studied extensively in 
the context of neutron diffusion in solidsJ ~) The most popular solution 
scheme, originally due to Case, (2) is an expansion of the solution in terms 
of "singular eigenfunctions." Completeness theorems for these eigenfunc- 
tions have been proven for the general equatio~ h(p)Oxf+ ~ f =  O, under 
the assumption that d be a selfadjoint positive operator in some appro- 
priate function space. ~ The positivity assumption may even be dropped. (4) 

In the case of a nonzero electric field, these general theorems do not 
apply because the operator d = eEc~p - ~ is not selfadjoint. Nevertheless, an 
eigenfunction expansion might be possible for specific collision operators. In 
ref. 5 the author made an attempt in this direction and obtained a kind of 
half-range completeness for the RTA- (or BGK-) model in the limit of zero 
ambient temperature. This is not a very amazing result, since in this limit 
boundary-value problems generally can be solved analytically. (6) 

In this article, we present two nontrivial collision models for which the 
half-space problem (1) (2) can be solved via an eigenfunction expansion. 
Under the assumption that the boundary value q~ be a Laplace transform, 
we prove half-range completeness of the eigenfunctions. Moreover, by 
straightforward insertion of the expansion coefficients into the eigenfunc- 
tion representation of the solution, we obtain the solutions explicitly in 
terms of the boundary value cp, so that the restrictive assumptions upon (p 
for the half-range completeness may be dropped. 

2. THE  E I G E N F U N C T I O N  E X P A N S I O N  

Inserting the separation ansatz f~(x, p):=e ~Xg~(p) into Eq. (1), we 
obtain for the functions gx the "eigenvalue" equation 

(2 - eEOp) gx(p) = - 2  p gx(p) (3) 
m 
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Since Eq. (1) is linear, any superposition of solutions f~(x, p) is a solution 
of (1) too. Thus we assume the solution of (1) to be of the form 

f(x, p) = f d2 A(2) f~(x, p) = f d2 A(2) e ~x gx(P) (4) 

The integrals run over all 2 for which a Ll-integrable solution of (3) exists. 
Because of the boundary condition at infinity, only 2 with a positive real 
part are admitted. In consequence, the force eE is assumed to point in the 
negative x-direction, that is eE < 0. (5) The expansion coefficients A(2) must 
be determined from the boundary value cp(p). Setting x- -0  in (4) yields 

f(0, p) = cp(p) = f d2 A(2) g~(p) for p > 0 (5) 

Now the task is to determine the class of boundary values cp for which this 
equation has a solution A(2). In order to make this problem tractable, we 
restrict ourselves to real values of 2 (which will turn out to be sufficient). 

The eigenfunctions g~ depend strongly on the collision operator 2, 
which has the general form 

~f(x, p)=M(p) f dp' K(p, p') f(x, p ' ) - f ( x ,  p) f dp' K(p', p) M(p' ) (6) 

where the kernel K(p,p') is symmetric and positive and M(p)=  
(2zcOm)_l/2e p2/2o,,, is the Maxwellian at the temperature 0 of the neutral 
medium, which is assumed to be in equilibrium. We are going to examine 
the following specific collision kernels: 

(a) K(p, p')=p Ipl" Ip'l. In this model, sometimes called "constant 
free path model," the first integral on the right hand side of 
Eq. (6) is closely related to the current, which was the starting 
point for Cercignani's solution of the stationary boundary 
value problem. Cv) His solution scheme even may be extended to 
x-dependent electric fields. Because of these amazing results, we 
will call this model "Cercignani's model." 

(b) K(p,p')=p[p-p'I.  Since this model has been studied by 
Piasecki in the presence of an electric field, we will associate this 
model with his name. In ref. 8 the inhomogeneous initial value 
problem has been solved in the zero temperature limit, in ref. 9 
the homogeneous stationary solution has been obtained and in 
ref. 10 the homogeneous initial value problem has been solved. 
Up to now, no solution of the stationary boundary value 
problem is known. 

822/88/1-2-10 
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It is interesting to note that in the zero temperature limits p[p[  M(p)--, 
6(p) for (a) and pM(p)~ fi(p) for (b) both models coincide. For this 
limiting model, the stationary boundary value problem has been explicitly 
solved in ref. 6, Section 5b). 

3. APPLICATION TO CERCIGNANI'S MODEL 

In this model we have K(p, p')=p [PI" [P'[. Thus, after transition to 
the dimensionless quantities 

P 2:=xpm , e : -  > 0  
/3 := V/ -~ ,  pore 

the eigenvalue equation (3) reads (for convenience the hats of the new 
variables are dropped) 

(COp- [p I+  2p) gx(p)= - [ p [  x/~ M(p) f dp' [p'[gx(p') (7) 

where M(p)= (2re)-l/2e p2/2 is the (dimensionless) Maxwellian. 

3.1. Determination of the h-Spectrum 

In order to examine for which 2 an integrable solution of (7) exists, let 
us split gx(p) =: O(p) g] + O(-p) g;, where O denotes Heavisides's step- 
function. To get rid of the integral on the right hand side of (7), we 
normalize ~ [p[ g~= 1. Then (7) reads for _+p>0 

- P e p2/2 (~Op + p(,~-7- 1)) g + = +-~ (8) 

For 2 > 1, the general solution of (8) is 

g~(p)=e-(;~+l)P2/2~:(cf T l  fo" ) 2e dq qe (~ + 1 --e)q2/2e (9) 

The continuity condition g~- (0 )=gS(0)  leads to C ]  = C S, and from the 
normalization ~ [p[ gz = 1 we find C~- = 2/3e. Evaluating the integral on the 
right hand side of (9), we obtain for 2 > 1: 

g~(p)=2 e (~-Vl)p2/2~.q e-('~T1)p2/2~--e p2/2 
- 2(2-T 1 --e) (10) 
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We remark that in the limit 2 --, e + 1 (10) remains well defined, as can be 
seen by application of de l'Hospital's rule. 

For 2 < 1, the solution for negative momenta, g2-, is again given by 
(9). However, for positive p (9) grows exponentially as p ~ oo if C 2 is not 
properly chosen. Hence, the only acceptable solution is 

(4 1)p2/2 ~_1 ( ~  gf (p)=e 
2e 

dq qe (~- 1 - - e ) q 2 / 2 e  - -  
e -PZ/2 

2 ( e - 2  + 1) 

From the continuity condition g ] ( 0 ) =  gS(0) we find C]- = 1/2(e-  2 + 1), 
and the normalization I IPl gx-- 1 leads to 

1 e + l  
1= 

2 + 1 ' e - - 2 + 1  

This only holds if 2 = 0 or 2 = e. 
In summary, the 2-spectrum consists of the continuous interval (1, oo), 

with the corresponding eigenfunctions (10), and the two discrete points 
2 = 0, with the homogeneous solution as corresponding eigenfunction, and 
2 = e ,  with the corresponding eigenfunction g=(p)=x/~M(p) which is 
proportional to the Maxwellian. If e > 1, the latter eigenvalue lies in the 
continuous region. 

3.2. Half-Range Completeness 

Now let us consider Eq. (5) and examine which boundary values q) 
can be represented as superpositions of eigenfunctions g~. Because of the 
boundary condition at infinity (2), no contribution of the homogeneous 
solution (2 = 0) may be present and hence the integral in (5) should be an 
integral over (1, oo) plus a single contribution of the discrete eigenfunction 
M(p). The following theorem, which is in analogy to the half-range com- 
pleteness of Case's singular eigenfunctions (2) (though for a much smaller 
class of functions), gives the class of functions ~o for which such a representa- 
tion holds. Surprisingly, there is a singular contribution of the Maxwellian 
even for e > 1. 

T h e o r e m .  Each function rp: [R + ~ N with I~  dppq~ < 0% that is a 
Laplace transform of any tempered distribution 

~o(p) = d/~ 4(/2)e -"p2/2= (11) 
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is a superposition of eigenfunctions 

~o(p) = a~g~(p) + ejl ~ d2 A(2) g~(p) (12) 

with expansion coefficients 

a ~ = 2 e ; ? d k t  ~(,u) 1' A(2) - 2 e ( 2 - - e -  1) ~ ~ ( 2 -  1) (13) 
�9 /~ p - e +  ( 2 - 1 )  2 - e  

where the tempered distribution T( /z)=~b( /z) / ( / t - -e  + 1) is a particular 
solution of the (distribution-) equation (p - e + 1). T(~) = ~(kt). 

Remarks.  (a) Accoding to H6rmander's theorem, (m there is a solu- 
tion T of (/z - e + 1) �9 T = ~b for any tempered distribution q~. If e < 1, we 
simply have T =  ~b/(kt --e + 1). If e > 1 and q~(Ct) is H61der-continuous at 
/z = e -  1, we can interprete the symbol ~ as "principal value." For general 
~b, the solution T might be more complicated. 

> oo (b) From the assumption oo ~0 dp pq~ = e ~ dlz ~/r which simply 
demands that cp be in the definition domain of the collision operator, it 
follows that ~//z is integrable on (0, oo), so that (3) is well defined. 

(c) Assumption (11) is a restriction upon the admitted boundary 
values, of course. Conditions under which (11) holds are given in ref. 12; 
the most serious restriction is that ~o be analytic in a complex halfplane. 

Proof. Let us start with the assumption that c# is a superposition of 
the continuous eigenfunctions alone and then prove that a contribution of 
the discrete eigenfunction g~(p)=  x / / - ~  M ( p )  must be added. Thus, let us 
try to solve for A()O: 

~0(p) = fl ~176 

:f? 
d2 A(2) gx(p)  

d2 A(2 + 1) gx + ,(p) 

2(2 + 1 - e) e ~p2/2~ _ ee p2/2 
d2 A(2 + 1 ) (14) 

2 e ( 2 -  e) 

If we insert (11) into (14), multiply with e p2/2, differentiate with respect to 
p and use uniqueness of the Laplace transform, we find 

2 +  1 - - e )  
q~(2)=A(2 + 1)2(2e(2-- ~ (15) 
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Now we must distinguish two cases, depending on the electric field 
strength: 

e < 1. In this case the numerator  on the right hand side of Eq. (15) 
has no zero and the solution of (15) is 

A(2) = 0 (2  - 1) 2e 
( 2 - e -  1) 4(2-- 1) 

( A - e ) ( A -  1) 

However, inserting this result into (14) we obtain 

q~(p) = q ( p )  - ee p2/2 ; :  4(2) 
d2 

2(4 + 1 - e) 

We see that in (14) the term a~.g~.(p), where a~. is given by (13), must be 
added. This results in our theorem. 

e > 1. In this case the numerator  on the right hand side of Eq. (15) 
has a zero at 2 = e - 1 and consequently, the solution of (15) is a distribu- 
tion rather than a function. In the space of distributions, the general solu- 
tion of (15) is 

A - e -  I 4 ( 2 -  1) 
A ( 2 )  - -  e ( 2  - 1)  2~ - -  , ~  - -  F c , g ( 2  - e )  

(2 - -1 )  ,~--e 

where c, is an arbitrary constant and ~ ( 2 -  1 ) / ( 2 - e )  denotes a par- 
ticular solution T(2) of the equation 4 ( 2 -  1) = T(2).  (2 - e ) .  Existence of 
such a solution is assured by H6rmander 's  theorem. (1~) Insertion of this 
result into (14) yields 

f : d 2  4(2) ~- c ,  e p2/2 
~o(p) = ~o(p) - ee --p2/2 ~ ~ ; "-]- 1 --~ T 

If we identify c~ with a~ in (13), this equality holds and we obtain our 
theorem. | 

3.3. Expl ic i t  Form of the  So lu t ion  

For  any boundary value ~o satisfying the conditions of the half-range 
completeness theorem, the solution of the stationary half-space problem is 
(see (4)) 

2 o o  

f ( x ,  p )  = as �89 e -p /2e -~X + J (1 d2 A(2) e ~Xg~(p) (16) 
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By straightforward insertion of the eigenfunctions (10) and expansion coef- 
ficients (13) into (16), we can express f (x ,  p) explicitly in terms of ~o. 
Remarkably, in the resulting expression the assumption upon q~ that it be 
a Laplace transform may be dropped and we obtain the solution for any 
q~ with ~ dp pq~ < oe. 

Let us split f (x ,  p) = O(p) f +  + O ( - p )  f . Insertion into (16) yields 
for positive momenta 

S f + ( x , p ) = e  x d2q~(2) e ;(x+p212,,.) 

"[- e--e.x--p2/2,~ fOC~ dl~ @(,z) 
( 1 -- e -"(~ + ' -~')) 

2 + l - - e  

If we write 

2(2 + 1 - e) U ( 1 - e  xl~+l <0)= dye y(~+l ,~) dqqe Xq2/2~ 

and remember that cp is the Laplace transform (11 ), we obtain 

f+(x, p)= e-"<4o(~ + 2ex)+e ,:x p212 ? dye j( ' : - l )  r ~176 dq qq~( qx/~7 2W) 
~0 

(17) 

In a similar fashion, we obtain for negative momenta 

f ( x , p ) = e  x p2/,:cp(~+2ex ) 

+e ~x ,,2/2 f~ ~dyey(,~ t) f ;  dq qq~(x/q2+2ey) 

+ 2 e  x(~: l) pZl2f;+pZl2':dyeYO~ 2) f ;  dqqq~(x/q2+2ey) (18) 

The results (17) and (18) are identical to Cercignani's result for a finite 
spatial interval of length L, (7) if in his solution the incident distribution at 
the boundary x = L is set to zero and L approaches infinity. 

4. APPLICATION TO PIASECKI'S MODEL 

In this model we have K(p, p ' )=p  [p-p'[ .  Thus, after transition to 
the dimensionless quantities 

p eE 
p .-x/,~, Yc:=pmx, ~ : =  -pom>O 
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the eigenvalue equation (3) reads (for convenience 
variables are dropped) 

(eSp+2p-v(p))ga(p)= -M(p)  fdp' [p-p'[ g~(p') (19) 

where M(p)=(2zO-~/2e-p2/2 is the Maxwellian and v is the 
frequency 

f ( ) v(p) :=  dp'lp-p' lM(p')=2M(p)+lPl 1 - 2  dp'M(p') (20) 
I;,I 

137 

the hats of the new 

collision 

4.1. D e t e r m i n a t i o n  of  t h e  A - S p e c t r u m  

In order to solve (19) we closely follow Gervois' and Piasecki's 
approach ~9) to the homogeneous equation (i.e., 2 = 0). Writing 

ga(P) =: M(p) G a(p) (21) 

and differentiating (19) twice with respect to p, we obtain 

eG,~' = ( v - ( 2 - e ) p )  G~ + 2 ( v ' -  ( 2 -  e)) G~ (22) 

which is a second-order differential equation for HA := G'.  In analogy to 
ref. 9, we substitute 

Xa(P) exp { N ~ P ) 2 P 2 \  (23) 
G'(p) = Ha(p) =: M(p) -~e J 

(read "capital v") is the primitive function of the collision where N 
frequency 

N(p):=I:dqv(q)=(l+p2)f:dqM(q)+pM(p ) (24) 

Substitution of (23) into (22) leads to 

e (z "  + p z ' - z a )  = (v '  - ,~) za  - ( v - , ~ p )  z'~ (25) 

From the definition (20) of the collision frequency v we see that 
v" + pv' - v = 0. Therefore Xa = v - 2,o is a particular solution of (25). The 
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second linearly independent solution can be constructed by standard 
methods, and we arrive at the following two solutions of (22) 

H~(p)=(v-2p)exp{NT~)+(1-!)P---2} (26a) 

g2(p) = HI(p) fP 1 dq (26b) 
po (v(q) - 2q) Hi(q) 

In order to determine the composition of the solution, let us examine 
the behaviour of (26a) for large p: insertion of (26a) into (23) and (21) 
leads to g~ ~ const,  exp{ - (2 -T- 1) p2/2e} for p ~ + o0, which grows 
exponentially for p ~ ~ if 2 < 1. Moreover, for 2 > 1 the solution (26b) is 
inacceptable because v - 2p has real zeroes for 2 > 1. Consequently we have 

( f ?  f;o dq ) (27a) 
2 < 1 :  g.~(p)=M(p) I + C ~  dp'H](p') , (v(q)-2q)H~(q) 

2 > 1 :  gx(p)=M(p)( l+C,~f:dqH~(q))  (27b) 

The integration constant CA must be determined by insertion of (27) into 
the eigenvalue equation (19). If we do so for 2 < 1 and evaluate at p =0 ,  
we obtain 

2e i ~ dq M(q) qv(q) - 0 2C~ 
Jo (v(q) -- 2q)e(v(q) + 2q) 2 

Since the integral is positive, this equality only holds if either Ca or 2 is 
zero. In the first case we have g~ = M and consequently 2 = e, in the second 
case g~ is the homogeneous stationary solution given in ref. 9. 

For  2 > 1, we obtain via insertion of (27b) into (19), division by p and 
evaluation at p = 0: 

"~-- e= f ;~ [ 2 'F f :  dq e-(;~-e)q2/2r v(q~ -------~q (28) 

The integrand on the right hand side of (28) is positive for q > 0 ,  so that 
the integral is positive. Moreover, asymptotic expansion of the integrand 
for q ~ ~ and q ~ 0 shows that the integral approaches a finite value for 
2 x~ 1 and behaves like 2/rc(2 - 1) for 2 ~ ~ .  We conclude that C~ has a 
zero at 2 = e and approaches 1/e for 2 ~ c~. A numerical evaluation of Ca 
is given in Fig. 1. 
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lambda 

Fig. 1. The  i n t e g r a t i o n  c o n s t a n t  C~ for  e = 5. It has  a ze ro  a t  )o = e a n d  a p p r o a c h e s  1/e = 0.2 

for  2 ~  ~ .  

In summary, the ,C-spectrum consists of the continuous interval (1, ~ ) ,  
with the corresponding eigenfunctions (27b) with C~ given by (28), and the 
two discrete points 2 = 0, with the homogeneous solution as corresponding 
eigenfunction, and 2 = e with the Maxwellian as corresponding eigenfunc- 
tion. If e > 1, the latter eigenvalue lies in the continuous region. 

4.2. Half-Range Completeness 

As in Section 3, we have half-range completeness in Piasecki's model 
as well. Once again the eigenfunction-expansion of the boundary value 
consists of an integral over (1, ~ )  plus a single contribution of the 
Maxwellian, which is even present for e > 1. 

Theorem. Each function c#: ~ + ~  with ~ d p p ~ o < ~ ,  that is a 
Laplace transform of any tempered distribution ~b 

~o(p) = f o  dt~ q~(lt) e-~'P2/2~ (29) 

is a superposition of eigenfunctions 

q~(p) = a~ g~(p) + ;1 ~ d2 A(2) g~(p) ( 3 0 )  

822/88/1-2-11 
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with expansion coefficients 

a~=x/~;? dqq~o(q)+x/~ f l~dt~(gqp)-l~(lz)~ (31a) c,, /  

A(2) = 1  x / ~  ~ 7t(2) (31b) 
e C a 

where the tempered distribution ~ is defined by 

;0 ( f; ) dlt ~P(lz) e ~pa/;, := e-N(P)/~" ~o(p) -- dq q~o(q) (32) 

and the tempered distribution T(p )=  :~gJ(p)/C~ is a particular solution of 
the (distribution-) equation C~. T(/~)= ~(/z). 

Romarks. (a) Because p is the Laplace transform (29), the distribu- 
tion ~ in (32) is well defined. Moreover, from the definition of N (24) we 
see that e X(p)/;~ ~ e -P2/2 for p --* oo, so that we conclude from the shifting 
theorem of the Laplace transform (~2) that g~(#) = 0 for p < 1. 

(b) According to the definition (28), C a is ( 2 - e )  times a strictly 
positive function. Hence, existence of a solution T of Ca. T = T is assured 
by H6rmander's theorem. 

Proof. As in Section 3.2, let us start with the assumption that ~0 is a 
superposition of the continuous eigenfunctions alone and then prove that 
a contribution of the discrete eigenfunction g~ = M must be added. Thus, 
let us try to solve for A(2): 

(p(p)=ff daA(2)ga(p)=M(p) fl~daA(2)(l+Caff dqHl(q)) (33) 

Integrating ~p dp' p' (33) by parts yields 

f )  dq qcp(q)= M(p) f :  d2 A(2)(1  + Cx I: dq Hl(q)) 

+ f~ da A(2) ~ dq M(q) H~(q) 

Using (33) we may replace the first term on the right hand side with q~(p). 
After an evaluation of the q-integral in the second term we obtain 

O(P) : =  eN(P)/e q~(P) -- dq qcp(q) = ~ fl d2 A(2) C~e-ap2/2e 
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Insertion of the representation (32) for ~, taking into consideration that 
7*(/~) = 0 for/~ < 1 (compare remark (a)), leads to (remember uniqueness of 
the Laplace transform) 

g(2~) --I/2 C2A(~)  = ~451(/~) (34) 

As in Section 3.2 we must distinguish two cases, depending on the electric 
field strength: 

e < 1. In the case CX has no zero for 2 > 1 and the solution of (34) is 

A(2)=~/~ ~(2) 
eC~ 

However, insertion of this result into (33) yields 

q~(p) = M(P) v/~ f~ d2 ~ + q~(p) 

- M(p) x//~ ( fl~ d)~ ~[t(J,) + f :  dqq~(q)) 

We see that in (33) the term arM(p), where a t is given by (31a), must be 
added. This yields the theorem. 

e > 1. In this case C~ has a zero at 2 = e and the general solution of 
(34) in the space of tempered distributions is 

~(~) 
A(~) = ~ 2 ~ -  + ~,~(~ - ~) 

where the first term is a particular solution of (34) and c~ is an arbitrary 
constant. Insertion of this result into (33) yields 

~( ,~ ) 
cp(p) = M(p) V/~ fl d~ ~ ~ -Jr- (#(p) 

+ c~M(p) 

If we identify c~ with a~: in (31a), this equality holds and the theorem is 
proven. | 
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4.3. Explicit  Form of the Solut ion 

For any boundary value (o satisfying the conditions of the half-range 
completeness theorem, the solution of the stationary half-space problem is 
(see (4)) 

f(x, p) = arM(p) e -= + d2 A(~) e -xx g2(P) (35) 
1 

Again we can extend the solution to boundary values ~o beyond the 
assumptions of the half-range completeness theorem by explicit evaluation 
of the integrals in (35). Straightforward insertion of the eigenfunctions 
(27b) and expansion coefficients (31) yields 

f(x, p ) = x / ~  M(p)e ~x { ; :  dq qq~(q) 

+ d2 ~(2) + d2 ~ (e (2 ~)x _ 1) 
1 1 ~C2 

+ fl~ d2 e (2 e)x ~[l(j.) ;: dq (OqeN(q)/e-2q2/2e) eq2/2) 

In the third term in the curly braces we write 

e -(2-~')x - 1 = - ( 2  -e) f: dye -(a-~)y 

Then we obtain after insertion of C2 accoding to (28) and using (32) 

f(x, p)=e . . . .  P2/2 { f :  dq qq~(q)-~ Iody e~Y~(~/2-~) 

_Ifdye~Yf:dqeq2/2(eN(q)/~.-e N(q)/~)v(q)2--q~(~) } 

+ eN(P)/~k(x//~ + p2)--e-p2/2 f:  dq qe N(q)/~ +q2/2ql(V/~ + q2) 

(36) 

where the function q/is defined (see (32)) 

~k(p) :=e-N(P)/~ (~o(p)-- f ;  dq qcp(q)) 
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5. S U M M A R Y  AND CONCLUSIONS 

In this article we have seen that Case's eigenfunction technique may be 
applied to half-space problems of kinetic equations even in the presence of 
a constant external field. For two particular models, half-range complete- 
ness of the eigenfunctions has been proven for a large class of boundary 
values. 

In both models, the solution of the half-space problem is a super- 
position of the eigenfunctions belonging to the continuous part of the 
2-spectrum plus a single contribution of the Maxwellian, which belongs to 
the eigenvalue 2 = e. The latter contribution is present even if e lies in the 
range of the continuous spectrum. This confirms a conjecture of Stichel and 
Strothman(13): the assumption that 2 = e is a singular eigenvalue was their 
starting point for an asymptotic analysis of the boundary value problem of 
the Boltzmann equation. The question arises whether this is a general 
feature of the spectrum. 

A more fundamental open question is which general class of collision 
models is amenable to the eigenfunction technique in the presence of an 
electric field. An obviously necessary condition is that the collision fre- 
quency v := ~ K M  must not increase more than linearly in p as p ~ 0% for 
otherwise the eigenvalue equation has no Ll-integrable solution. It would 
be desirable to establish sufficient conditions under which half-range com- 
pleteness holds. For general collision kernels however, we can not hope 
that the eigenfunction-solution can be extended to boundary values ~0 not 
satisfying the assumptions in the half-range completeness theorem, even 
though this was shown possible in the collision models considered in this 
article (see Sections 3.3 and 4.3). This may be possible only for particular 
choices of the collision kernel. 
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